Upsilon R_{AA} in sPHENIX update

Sasha Lebedev (ISU)

Found a mistake in error propagation.

Uncertainty from p+p measurement was not properly propagated.

No suppression

Upsilon R_{AA} from sPHENIX proposal

New Upsilon R_{AA} with correct error propagation

The error bars are slightly smaller now, but considering bin size the uncertainty is somewhat worse.

Realistic suppression

Theory prediction from:

M. Strickland and D. Bazow, Nucl. Phys., A879:25–58, 2012; arXiv:1112.2761

Agrees with PHENIX measured $R_{AA} = 0.50 \pm 0.18$ (stat) ± 0.11 (sys)

(A.Adare et al., (PHENIX Collaboration) Phys. Rev. C91 024913; arXiv 1404.2246v3)

Y(1S) uncertainty is in reasonably good agreement, but Y(2S) and Y(3S) errors are much larger

This point on

next slide

Example for $2 < p_{T} < 4 \text{GeV/c}$ (realistic suppression)

What's different now from the proposal?

- Correct hadron rejection factors now
 - rejection better at high p_{τ} , but worse at low p_{τ}
- Includes anti-protons (and protons and kaons)
 - anti-protons are the main source of fake electrons below ~4.5 GeV
- Background is now calculated vs. p_T (was integrated over all p_T)
- 0.9 eID efficiency in AuAu (was 0.7)
 - in p+p eID efficiency 0.9 in both cases
- Direct Upsilon counting now vs. Crystal Ball fit (?)
 Direct counting in mass range: 9.10 9.60; 9.85 10.20; 10.25 -10.45 GeV
 - accuracy of the measurement could probably be improved by using fit

Conclusions

- For no suppression case reasonable agreement.
- For realistic suppression Y(1S) R_{AA} is in reasonable agreement, but Y(2S) and Y(3S) have much larger errors.